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Abstract

This paper presents a method to encapsulate parameterslofi@vary algorithms and to create
an abstraction that simplifies the control and the undedstgrof the internal behavior of the al-
gorithm. A fuzzy model is used to learn the effects of par@msedver the search process. Then,
high-level strategies can be defined to modify parameteaos@atically in order to achieve a sched-
uled level of balance between exploration and exploitatioring the search. We experimented
supervised control strategies and autonomous schemexdjbat parameters dynamically. Experi-
ments have been performed on the Quadratic AssignmentdPndblorder to analyze the strengths
and weaknesses of each approach. Possible improvemeriits géheral methodology are also
discussed.

Keywords: Parameter control, evolutionary algorithms, fuzzy logiatrollers, machine learning,
adaptive control

1. Introduction

Evolutionary algorithms (EAs) (Michalewicz, 1996) havesheoriginally inspired by natural evo-
lution. Given a problem, a population of individuals thatedes candidate solutions, evolves by
means of genetic operators. Those operators, namely ontatd crossover, may alter one individ-
ual or combine the information of two individuals to produétspring. The bestindividuals are then
selected to survive, depending on a fithess measure. Giigegeheral formulation, EAs have been
used as general purpose solvers and successfully appleeditte range of optimization problems
in various domains including combinatorial optimizatisoch as planning, timetabling, scheduling
or global optimization (i.e., with continuous variable§pecific knowledge on problems domains
and structures can be used to design specific operatordh wiién improve the search process.

Several EA features such as application rates of opergtopsilation size, selection pressure or
even characteristics of particular operators may be stdgjeio parameters. The correct setting of
those parameters has a crucial effect on the ability of thedeproperly solve specific problems.
This setting is required because every problem has diffeskaracteristics and must be solved
in a special way. The “No Free Lunch” principle (Wolpert anddveady, 1997) stands that a
particular solving method is efficient only within a resteid scope. Therefore, the most natural
way to improve the efficiency of EAs is to parameterize thenhaodle various problems with
different characteristics. However, parameter settirdjtaning are difficult to achieve for, at least,
the following reasons:
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Parameters are problem-dependent.

e “Optimal” values of parameters are not stable along theckedror instance, it is frequently
admitted that the search space must be widely explored éoefamcentrating in the most
interesting areas. Therefore, static parameters leadtogiimal searches.

e The effect of some parameters is often a priori unknown. kample, it is difficult to forecast
precisely how and how much a specific operator will affectdbecentration of individuals
in the search space.

e Parameters usually interact in a complex way, so a singknpeter will have a different effect
depending on the value of the others.

Parameter control is not a new issue and huge efforts havedm® in order to discover the
influence of canonical and special parameters (cf. SecdioiilZze main directions of these efforts
areparameter setting.e., finding optimal fixed parameters for the whole run, pacmeter control
where parameters are adjusted during the run based on lsavinga (see Eiben et al., 2007).

It must be noted, however, that most of the literature on shigject focuses on the study of
specific parameters within specific algorithms to solveipaldr problems. There is a lack of high
level criteria when designing control strategies. Fromrzegal point of view. This restricts param-
eter control to specialists and limits the potential use Aty a more extended range of users on a
wider set of problems. Excluding Evolutionary Strategsse(Beyer and Schwefel (2002)), when
EAs are applied to real world problems, parameter tuningtfobis almost nonexistent) is carried
out by quite rudimentary methods, usually time-consumerigs of trial and error runs. Therefore,
it would be interesting to propose a method that could be bisedon-specialists, including the
following characteristics:

e It should provide an abstraction of parameters, to focusctivgrol on“how to guide the
search”rather tharfhow to adjust the parameters'This abstraction must be general enough
to be applicable to a broad range of algorithms.

e It should work with nonstandard parameters, in order to daesirict user’'s possibilities to
create new features. A method that works only with some fipgarameters would not be
useful to applied-EA practitioners.

e It should be easy to integrate within any EA. The goal of ther iss not to create a complex
control mechanism, but merely to solve her/his problem.réfoee, control must be available
at minimum effort.

e It should help to save user's time. Although adjusting patams is indeed a part of problem
solving, it is a mechanical process that deviates the usens their primary goal. Control
must be as autonomous as possible.

This paper discusses these issues, based on a method phgwwestigated in Maturana and
Saubion (2007a,b). An intuitive idea of this approach isescéatized in Figure 1: the controller
assigns values to parameters of the EA. The EA computes aagemewith this setting and in-
forms the controller about the diversity of the populatiow #ghe quality associated to this setting.
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Figure 1: General scheme of the interaction between céetrahd EA

The controller uses this measures to model the influencerahpeter settings over the algorithm
performance, and keep the best settings —according to a diversity and quality— to be used later.

This method simplifies parameter control by creating anrabson of multiple parameters.
This abstraction permits to control the EA with a single pagter, which is related to a high level
concept: the balance between exploration and exploitatiothis way, the control strategy can be
handled in terms of increasing or relaxing exploitationjclihis easy to understand by any user.

When dealing with huge a search space, the management oéldnech between exploration
and exploitation constitutes a key factor of a successfatcke On the one hand, an algorithm
should be able to visit scattered areas of the search spadbeather hand it should have the
ability to focus on specific zones in order to identify locptima. These two complementary tasks
are required to reach a global optimum or, at least, a suiapt of good quality. Nevertheless,
as mentioned above, the relationship between the paragyatédre algorithms and these two high
level search strategies is difficult to manage.

In this work, our main motivation is to provide an abstractaf parameters to generalize con-
trol. This abstraction will allow the user to think in morengeal terms and will facilitate her/him
the task of constructing autonomous control approache$séaftion 4).

Our method consists of two phases:

1. Learningis dedicated to understand how the parameters affect thehsead to model their
behavior. Examples are generated for combinations of pgexmvalues and a fuzzy logic
model is used to store the acquired knowledge.

2. Control uses the acquired knowledge to guide the search. The moilelrbtihe previous
phase is used, altogether with a search strategy, to dyalynizjust the parameters during
the run, with regard to the required level of exploration argloitation.

In this context, three important aspects must be considérad to collect examples for learn-
ing, how to obtain the model, and how to create the strategyitde the search.

Paper overview

This paper is organized as follows. Section 2 presents Ytledl relevant work on this subject. Sec-

tion 3 presents the method, discussing the different ouecdspnentioned above. Section 4 shows
experimental setup of experiences, and Section 5 discussea$s. Finally, Section 6 provides some

conclusions an future guidelines.
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2. Related Work
2.1 Parameter Control in EA

Figure 2 presents the taxonomy of parameter setting metpogisosed by Eiben et al. (2007). Two
main groups are defined, depending on whether parametensaaliéied (control) or remain static
during the run (tuning). A subclassification of parametenstiol distinguishes different ways to
adapt parameters: if parameters are changed in a detetimimég/, for instance as a function of the
number of elapsed generations, control is catleterministic If changes are related to the current
state of the search itis calledlaptive Finally, if parameters are coded inside individuals arae/
with them, control is calledelf-adaptive

Each approach has its own advantages and drawbacks. Paragtéhg is simple to implement,
but convenient parameter values are difficult to find. Moespthey can be well suited for a par-
ticular moment of the search, rather than for the whole ei@tuDeterministic control solves this
problem by adjusting parameters based on deterministis.riiowever, the timing of application
of these rules can be inaccurate and depends on the seardoedAgowledge is therefore required
to set up a good schedule. Self-adaptive has the problentidasing search space, because the
EA must solve two problems simultaneously: to find the cdrpacameters and to solve the orig-
inal problem. Adaptive control is faster than auto-adaptentrol, but there exists a problem for
defining a performance measure to provide a suitable fe&dbamwntrol.

Parameter setting

before the run during the run
Parameter tuning Parameter Control
Deterministic Adaptive Self-adaptive

Figure 2: Taxonomy of parameter setting proposed by Eibah ¢€007)

Within adaptive control, the state of the search is conlgtanonitored and changes are made
in values of parameters according to some criteria. The uneas parameters performances can
be expressed as a fixed aim, such as the 1/5 success rule @riReol (1973), that expects one
successful mutation out of five; or in a competitive way, agimerens (2007), where the most
successful parameter combinations are rewarded. Commasumes of performance involve the
ability of parameters to produce improved offspring, desghe fact that it is necessary to accept
fitness worsening to escape from local optima.

Within adaptive parameter control we may distinguish twdnmzerspectives. The first one
involves a learning method to understand the effect of patara over the performance of the EA.
The second one, on the contrary, assumes a rule that linkgetf@mances with parameter values.
We now detail these approaches.

e In the first approach, adopted in our work, a functign formance = Pj(parameters)
is obtained by learning how the parameters affect the pmdoce of the algorithm. To de-
termine Py, a series of experiments with different parameters valuesun and resulting
performances are monitored during some generations. ®ecexperiments are done, the
function P; is adjusted. Since the shape Bf (i.e., the shape of the plot: linear, polyno-
mial, exponential, periodic, etc.) is a priori unknown, itide enough modeling technique
is needed to adjust it. The advantages of this method ishbeat is no assumption abobt,
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so several different parameters can be studied and modetad aame time. FunctioR;
can also be used to provide information about internal behaif the algorithm. It can be
useful to understand, for example, the effect of some operates over quality, or how the
population size prevents the loss of diversity. The drakbauclude the extra execution time
corresponding to learning generations and the fact thaesdfacts could be not stable, thus
gathered information can expire in a short time. Wong et28108) proposes an algorithm
divided in periods of learning and control of parametersadijysting central and limit values
of them. Kee et al. (2001) presents two methods includinguanleg phase that tries different
combinations of parameters and encodes the results irstableles.

e The second approach requires some prior knowledge aboatgbethm. Here, the function
parameters = Py(per formance) is a priori known. This approach is typically used when
adjusting application rates, by awarding successful apesdo raise their future probability
of being chosen. Since no learning period is performed, thim mdvantage of this approach
is the speed of execution. However, the encoding of someeas other than operators
rates is not obvious. This is by far the most common approddtierens (2007) presents
a controller that adjusts operators rates according tmtgmrformances. Similar ideas are
presented in Igel and Kreutz (2001) and Lobo and GoldbergA)L9n Whitacre et al. (2006),
this approach is extended by considering several statisfilndividuals fithess and survival
rate to evaluate operator quality. In Eiben et al. (2004,dgbpulation is resized, depending
of several criteria based on the improvement of the bestiiist fithess. Eiben et al. (2006)
modify parameters according to best fithess value. Someaa&ih this class require special
features from the GA, such as Lis (1996), that maintainsra¢y®pulations with different
parameter values and moves the values of parameters tdveaveltie that produces the better
results. In Tsutsui et al. (1997), a forking scheme is useparant population is in charge
of exploration, while several child populations exploitfpaular areas of the search space. In
Harik and Lobo (1999), a parameterless GA gets rigafsize parameter by comparing the
performance of multiple populations of different size.

As far as we know, no effort was made in order to build a realrabson of parameter control.
Let us illustrate the importance of this abstraction witleaample. Imagine that we are using an EA
to solve an optimization problem and that we have noticetlttieapopulation tends to concentrate
to one local optima. Thus, we decide to raise mutation raterder to escape from there, and
later reach a global optimum. This could seem obvious, smuag&tion is seen as the exploring
operatomar excellenceHowever, what we wanted waversity, not more mutation. What if there
is another operator that could spread the population wittfmidisruption that mutation causes?.
Indeed, when dealing with specialized operators with nibln effects, there might be another
operator capable to produce “good diversity”, i.e., diitgraith a controlled loss of quality.

The relevance of building an abstraction of EAs lies in a hurf@etor: a good abstraction is
much easier to handle than a set of low level variables cotiyptelated. Cars would have never
become popular if, instead of a gear and pedals, users waukltb deal with geared wheels, dif-
ferential gears, and valves to control fuel and oxygen floWslear and simple interface facilitates
the encapsulation of modeling mechanisms, not to mentianah autonomous control scheme is
also easier to be defined by the user when a good abstractiseds
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2.2 Fuzzy Logic Controllers

In order model functions with an unknown shape, it is neagstsause a support flexible enough
to approximate any kind of functions. Analytic models (gligear, polynomial, or other) are use-
less because they assume a shape that could not represefitettie of parameters over search
performance. In this work, we use Fuzzy Logic Controllerns@l

Fuzzy Logic (FL) is an extension of classic Boolean logicBbolean logic, a sentence is either
absolutelytrue or falsewhile FL admits an infinite number of levels of truth that axpressed by a
membership function with values ranging from O (false) targ). FL better expresses imprecise
notions such as “cold”, “far” or “slow”.

One of the most useful applications of FL are FLCs (KulkagfiQ1; Piegat, 2001). FLCs
permit to infer answers from rules such‘@s car _speed is high AND road is dry, THEN risk is
medium”. Figure 3 shows the general structure of a FLC. The first stdpeitransformation of crisp
input —real numbers— to their corresponding fuzzy expoessiThen, an inference engine obtains
the fuzzy output based on fuzzy rules, and at last, fuzzyutusdranslated into a crisp output using
a defuzzifier.

inference
engine

input T output

X —>| fuzzifier |—> —>| defuzzifier |—> Y

rule base

Figure 3: General scheme of a Fuzzy Logic Controller (FLC)

There are several variants of the “standard” FLC descritbede The particular FLC used in
this work is known as Takagi-Sugeno (Takagi and Sugeno,)198%his controller, the output vari-
able is not expressed in a fuzzy way, but directly by a fumctibinput values, thus defuzzification
is not necessary. Since FLCs are universal approximatarserdgfnuous functions (Buckley, 1993)
they act as modeling tools that express the output withiogldd inputs.

A pioneer work applying Mamdani FLCs was proposed by WangMaddel (1992). In this
work, a functiony = f(x1, x2), is modeled using Mamdani FLC from experimental data z2, y).
This is done by dividing the input space in a grid, and findimg ¢haracteristic value gffor each
cell. Many methods have been based on this article. CostaeBrand Dente (1999) have studied
the effects of noise and the quality of examples in the gdioeraf Mamdani FLCs, pointing out
that Wang and Mendel's method, which uses just a few exanipleseate FLCs, is vulnerable to
noisy data.

3. Method Overview

This section presents the method we have developed to @eatbstraction of parameter control.
The method includes an initial gathering of examples, wisaxplained in Section 3.1. Later, the
collected examples are used to build a model (Section 3i2allfs the model is used to control the
search by adjusting the value of a single parameter, guigleddtrategy (Section 3.3). Of course,
all this processes is presented as a black box to the usarhwknefit from a simplified view of
the method, explained in Section 3.4. Additionally, therusean take advantage of the data gathered
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during the process, in order to obtain a deeper knowledgetdbe EA. This is explained in Section
3.5.

The method consists of two main phases. The first one is dedit@understanding the effect of
parameters over the search. We propose to use two measyresamance: diversity and quality
of population. In this work, we use the mean fitness of theviddals as quality and a measure
of dissimilarity among individuals for diversity. The digty measure depends on the encoding
used (see Section 4.3 to obtain details of the diversity oreassed in this work), while the mean
fitness could eventually be replaced by the fitness of theihdisidual, or another central tendency
measure.

Diversity has been chosen because it is highly related Wwétbalance between exploration and
exploitation (EEB). A low level of diversity means that afidividuals are concentrated in some
areas, evidencing an exploitation stage. On the other fehayjh level of diversity indicates that
individuals are spread over the search space and revealpbkmation stage. Note that this is not
always true, since an algorithm that efficiently solves atimaldal problem with a small population
could have diverse individuals at maximal exploitation. ekvf one could discuss whether this
situation is uncommon or not, diversity seems to be a goodghoomise measure between a genuine
expression of EEB and easiness of understanding and imptatios.

After the model has been obtained, it is necessary to fincheubétter parameter combinations.
Here two characteristics are considered as desirable: hradiigrsity, in order to avoid getting
stuck in local optima, and high quality. Since these are aiimity objectives, the combinations
of parameters corresponding to Pareto front (Pareto, 18@6)dentified. Pareto front is used in
multiobjective optimization and corresponds to the setadfi{s from which no other point is better
in all individual objectives measures.

Note that obtaining the Pareto front of parameters valugsreduces the number of possible
settings. Another criterion is still necessary to chooséchviof those settings will be applied in
a specific situation, i.e., which level of diversity will bequired by the algorithm. Indeed, the
learning phase only builds the abstraction, so in the sepbade a diversity variation strategy will
be defined.

Figure 4 shows the main states of the controller, invokechbyBA in each generation. States 1
to 5 correspond to the first Learning phase, and State 6 tao@qftase.

/ 1. Ignore intial generations

Set parameter values to initial values
Return parameter values

2. Example gathering 3. Build preliminary model \
for

Perform multiple lineal regression
examples in each influence area

Build corresponding FLC

Obtain Pareto front of Diversity/Quality

B{ild CachedDiv

Register parameter values

Register observed diversity

Register observed quality

Set random parameters within a range

/ @rn parameter values /

{

5. Build definitive model

/ 4. Refinement

6. Control phase \

Register parameter values
Register observed diversity
Register observed quality

Set parameters acording to model

Perform multiple lineal regression for
examples in each influence area

Return parameter values /

Build corresponding FLC
Obtain Pareto front of Diversity/Quality

@d CachedDiv /

Set diversity according to strategy
Set parameters acording to model

Stop search if maxgen is reached
Return parameter values

\_

Figure 4: Main states of the controller
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3.1 Learning

In order to collect the examples, the space of parameteiisiteed by placing fuzzy partitions for
each parameter. Each intersection of fuzzy partitions lieactan Influence Areadepicted as a
round-corner square in Figure 5.a. This division is furthadivided to obtain a finer training grid
(the motivations of this subdivision will be explained IgteThe factor of this subdivision is called
fineness

fPy3

[P

Py

fPy  fP fPys

Figure 5: (a) influence area (fpfp22) for two dimensions, in a partition with fineness of 3. (b)

Formation of platforms (emphasized by squares) in a 4x4sedaaining grid

The learning phase is divided in five subphases:

1.

Ignoring initial generations In order to wipe out the high diversity and low fitness of the
random-generated initial population, a number of genamatis ignored at the beginning of
the run;

. Example gatheringin which learning examples for every fuzzy partition condiion are

generated,;

. Preliminary model building where diversity and quality FLCs are built, based on earlie

collected examples

. Refinementin which new examples, focused in the most promising ar@@sgenerated to

fine-tune the model;

. Definitive model buildingwhere all examples are used to build the definitive modeichvis

released to be used duri@pntrol phase.

Three main problems arise during this phadienensionalityinertia andnoise Dimensionality
is related to the fact that the amount of examples to be gatkdepends exponentially on the
number of controlled parameterertia is related to the resistance to the change of diversity and
mean fithess values between consecutive generations. Wiermderstandoiseas the short-term
variation product of random operators that induce inaaguira modeling.

A symptom of inertia can be observed in Figure 5.b. Here, aseogrid of4 x 4 divides the
2-dimensional parameter space (shown in the base of théigjapnd the z-axis corresponds to
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diversity. All the examples within each influence area wesaegated before passing to the next
one. Although the surface is designed to be continuous néwtia of diversity flattens the data in
each cell. Even whenéx 4 fuzzy partition is enough to model the surface, a finer subidin is
required to generate examples, what justifies the subdivisi influence areas.

In order to avoid abrupt changes in parameter values, we diefilged a special visiting order,
called smooth that moves between positions with the minimal possiblengba Figure 6 shows
examples for 2 and 3 parameters in contrast with classiegtad loop” visiting order.

(@) (b) ©
I O I (]
[ O A [BE]

CEOE0 EE0e0 BI T 56
HOEEE B0 56
EEs=alie ===t e

Figure 6: Visiting orders: (a) classical “nested loop”, ¢$mooth in 2D, (c) smooth in 3D

In order to exclude initial generations that present ditiessand fitness levels caused by ran-
dom population creation, the algorithm ignores a numbeeokgations in the beginning of the run.
To consider long-term operators (like mutation, whose beia¢effects are not appreciated instan-
taneously), mean fitness is corrected by assigning an erpaltg-descending weighted average of
their own values and the following ones.

Once all examples have been generated, the algorithm mbeédlsnctionsDiv(P) andFit(P),
that express the relation of parameters with diversity ardmfitness respectively, using FLCs (cf.
Section 3.2).

Before passing t&ontrol phase, a second example gathering is performed, using thesva
obtained during the first modeling phase, plus a normatidiged error, to finely explore the most
interesting combinations and their surroundings. Latkrcalected examples are considered to
build the models of Diversity and Fitness again.

3.2 Model building

In Takagi-Sugeno FLCs, output variables are expressed by@ién of input variables. When
FLCs are used with modeling purposes, it is necessary totimtefunction from examples. Figure
7 shows an example of fuzzy modeling. Suppose that we wanbtieha noisy functiory (x) with
data pairgz, y) obtained experimentally (points in the figure). The firshthto do is to divide the
domain, in order to model the unknown functigiz) by intervals. In each partition, a polynomial
function is adjusted, for example, by minimizing the meaot square of errors. Figure 7.a shows
4 partitions and the polynomials of degree 1 (lines) thatistdgach partition. To obtain the whole
model of f(z), the polynomials are combined according to the value of nesfilp functions,
shown at the bottom of the plot in Figure 7.b. Dashed line shibw final model.

In this work, the regression is performed with regard tosihg@arameters controlled, i.e., the
hyperplanesy + G1x1 + -+ - + Bz = 0 is calculated for each influence area, and then used to
model the entire function.

Figure 8 shows an example of resulting models. Here two petersymut andrep, are con-
sidered. Those parameters control the application ratésabperators, mutation and repairing,
respectively. The surfaces represent diversity and meaasftas function of the parameter values.
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Figure 7: Fuzzy Modeling: (a) domain is divided and a linegyression is performed for the points
in each partition, (b) Function is assembled from the pahyiads

However, what we need during the Control phase is exactlppipesite: to fix the values of param-
eters that would produce a required level of diversity. ldeorto build the inverse function, we are
interested only in the values that maximize the expectedrfieess of the population for different
levels of diversity.

diversity mean fitness 1
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o
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parameter value

05 ST -10000
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ST 05 | .
0 %W% -15000 :
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= 4

i\
f
‘\

0 0.2 0.4 0.6 0.8
diversity

Figure 8: Information obtained frorbearningphase: Diversity and mean fitness surfaces for two
parameters, and plot of corresponding values of cache table

The strong line over the diversity surface shows the valfipaimmeters that produce all values
of diversity —within the reachable range— with the higheteleof quality, according to the mean
fitness model. This line is stored as a table (at right in theréignamedCachedDiy that shows,
for every value of diversity (in the x-axis) the optimum canmddions of values of parameters. From
here on, the controller only refers to this table.

3.3 Control phase and strategy design

One advantage of handling Learning and Control separatdhyat we can make a total abstraction
of algorithmic details in the following. Note that duringiglphase, the control is fully abstracted,
since the only issue to consider is to modify the balance éetvexploration and exploitation along
search. This is done by modifying the value of diversity.

The challenge in this phase is to find a strategy to set diyevaiues along search, in order
to avoid being trapped in local optima and, at the same timeraperly exploit the search space
to speed-up the search. Several criteria can be considered $hould diversity stand in an inter-
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mediate level?, Must it move to produce alternate betwegioeation and exploitation?, Must it
decrease slowly in an exploration to exploitation like imslated annealing?.

If an excessive diversity is allowed, a sparse exploratidhoecur, loosing computation time.
On the other hand, if diversity is not sufficient, it is likellgat premature convergence will oc-
cur, losing potential useful information. These two argateesupport the use of an intermediate
“correct” level of diversity. Naturally, different prohtes have different values for this “correct”
diversity. Therefore, the controller algorithm must beedtiol find it. An approach to do this consists
in considering the variation of fithess value of the betteividual of the population, during recent
generations. If the same value is often repeated, is likedy the population is converging to the
area where the related point is located.

Another possible approach is to start from an initial pedbexploration, shifting to an exploita-
tion one. This could help to first identify the most promisergas to progressively concentrate the
search on them. However, note that if the search space isitowr rugged the population could
not well identify the best areas and could be trapped in loptima. In this case, a possible strategy
could be to perform this shifting from exploration to expédion several times. Actually, during
preliminary experiments we have noted that some problenme easily solved just by zigzagging
between the extreme values of diversity.

When diversity is increased to escape from local optimaetlaee some aspects to consider.
The first one is how high the diversity must be raised. If itde tow, individuals could stay in
the same area of the search space and converge to the sameroptihen performing exploitation
again. If the value is too high, there exists the risk of lnagsimportant information. The second
aspect is the number of high-diversity generations thdtheiperformed. Too few or too many can
cause the same effects discussed before. Here we have eeudsal period of “forgetting”, which
consists in raising diversity to its maximal value duringuenier of generations. Since parameters
are automatically set to obtain the higher possible meaesi#nthe lowering on quality is roughly
retained.

We have also experimented a small oscillation of diversibpiad nominal level, in order to per-
form a local exploitation/exploration and to help stalilg the value of actual diversity compared
to commanded one.

In order to compare different strategies, the consideratimentioned above were included in
the following four strategies:

e MX (Mixed): that integrates first-explore-then-exploit, forgettimglahe small oscillation.
A series of intermediate descending diversity levels ararmnanded to the EA, with an os-
cillation above and below the nominal level. A number of gatiens are executed at each
level, which are extended in case of finding an historicalrompment. Once the algorithm
has achieved the lower level, diversity is raised to its mmaxn value for a while, in order to
escape from local optima. After this, the same scheme istedeagain.

e CD (Correct Diversity): to test the “correct” diversity concept. Every 10 generaticthe
fitness values of the best individuals of the lagjenerations are considered. If more than
g of those values are repeated, diversity is increased, aleads'fthang are repeated, it is
decreased.

e 77 (ZigZag): that implements a wide oscillation around a central valudigdrsity. This
value is given by the mean of commanded diversities corredipg to the last five historic

49



JORGEMATURANA AND FREDERIC SAUBION

improvements. The oscillation, centered at this pointwgrantil the limits of possible diver-
sity. If an historic improvement is reached, the amplituflthe oscillation is reset to zero, to
start growing again.

e FX (Fixed): mainly for purposes of comparison. The algorithm is exetutith a fixed value
of diversity.

Different levels of autonomy can be identified in those sgeds during the search. FX has
no autonomy at all: it is not able to adapt itself to changethefsearch states. ZZ and MX have
a higher level of response to changes: the strategy is madfieline according to the observed
events. Finally, the most reactive and autonomous strage@p, which constantly monitors the
search state to adapt the level of diversity required.

3.4 From a user point of view

Figure 9 shows how the main loop in the EA links up with the cadlfgr. There are basically two
calls to methods of the controller, one to ask for new pararsatalues, and the other to provide it
with feedback.

m
>

Controller
ask for parameters :
Determine values for parameters:
- Learning: according to smooth
- Control: according to CachedDiv
P=@®.R,-P) and Strategy

g --------7---1

Set parameters
to values in p

Apply EA's
operators
and selection

Measure
Diversity and
Quality Div,, Qual,

Update examples.
Eventually build model

Figure 9: Interaction between the EA and the controller

From a user point of view, the implementation does not regres big programming overhead.
There are basically two invocations to the controller, amalhew methods to implement (marked in
grey in the figure). The first method must set the values stgdédxy the controller into parameters
variables. The second one measures diversity and qualdgotade feedback to the controller.

3.5 Analysis Tool

The learning phase produces two results that can be usethifstudy of internal EA behavior. Let
us consider the plots in Figure 8, that show diversity andmfigaess control surfaces, and a plot
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of CachedDiv. By analyzing diversity FLC, the strong effetimutation can be clearly observed:
diversity increases withut until reaching its maximal level aroundut = 0.3. On the other hand,
rep, that has less influence over diversity, has an importapteéiver mean fitness. Indeed, when
both values are bignfut > 0.3 andrep > 0.5) a joint effect happens: while mutation rises the
diversity, with the side effect of disrupting it, repairifigges the errors and prevents an excessive
fitness decrease.

Diversity and Fithess FLCs, and mainly CachedDiv can be tse#itain valuable information
on the controlled EA. A somewhat flat line in CachedDiv intksaa parameter with a minimal or
null effect over EEB, whose value is better to fix to the valug tappears in the ordinates axis of
CachedDiv. If two ore more parameters have a similar behdki®y can be handled together. If
two parameters are complementary (for instance, if their suroughly the same) one of them can
be eliminated from control and replaced by a rule in ordertdti@io their value from the other.

Although this small explanation-oriented example is noywapressive, this approach becomes
a valuable tool when dealing with three or more parametaibiize effort to figuring out the values
of parameters in order to obtain a given diversity becomeagctable.

4. Experimental Setting

Since our method handles learning and control separataligation is twofold. Firstly, we want

to verify that the CachedDiv table contains the parameterbioations that actually produce the
desired diversity and good-quality populations. Secgnalywant to find out which control strat-
egy produces the best results for several problems. Theatientalgorithm works over an EA that
solves several instances of Quadratic Assignment Prob(@iP}. Our aim is not to be compet-
itive for this particular problem, but to compare the periance of the controller using different
strategies.

4.1 Quadratic Assignment Problem

The QAP is a well-known combinatorial optimization problémat can be stated as follows. Let us
consider two matriced = (a;j)nxn, B = (bri)nxn, @and a mapping functiohl. The goal is to find
a permutatiorp; = (w(1),7(2),...,n(n)) that minimizes:

Fm) =>"3 " aibriyng

i=1 j=1

This problem was formulated by Koopmans and Beckmann (1f@62) facility allocation problem,
in which a set ofn facilities with physical flows between them (matr®) must be placed im
locations separated by known distances (mal)x The goal is to minimize th¢low x distance
of the whole system.

A set of 38 medium-size instances, obtained from the QAPE[®sitory (Burkard et al., 1997),
was selected to test the algorithm, covering instances &bfamilies.

4.2 Evolutionary Algorithm

The individuals are encoded as permutations. Populatimmisifixed in 100 individuals and three
operators are applied: standard exchange mutation, ttetlanges two allocations randomly,
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cycle crossover (Oliver et al., 1987), and a specializedaipe femaké@ that randomly erases four
allocations, tries the! possible reconstructions and keeps the better one. S®lastachieved by
roulette wheel (Holland, 1975). 15 runs of 10.000 genenatigearning not considered) have been
performed for each instance and strategy. This great anthyanerations was defined to observe
how definitive is premature convergence in every case.

4.3 Diversity measure

Using permutation encoding, we measure diversity as theptmment of the similarity between
individuals. Let the similarity of the population be

popsize popsize n

sim = Z Z Zc(z’,j,k) 1#£ ] @

i=1  j=1 k=1
Wheren is the number of variables in the problem and the functiondefed as

o(i, j, k) = 1 if variable £ in individuals: andj have the same value
T 0 otherwise

In order to normalize similarity (thus diversity), we needind lower and upper bounds. Upper
bound is reached when all individuals are the same, therefoper bound is

up = popsize - (popsize — 1) -n

To calculate the lower bound is less evidentpdpsize < n (Figure 10.a), lower bound & with a
population whose values are shifted each time. In genexagrlbound is defined by the following
formula

2:n-A-B+ gy n® ifA>2

WhereA and B are the quotient and rest of the integer division betwgesize andn, respec-
tively. A corresponds to the number of blocks of minimum similaribypwsn in the figure as grey
blocks. B is the number of individuals that do not belong to a compléeko The minimum sim-
ilarity between two blocks i€n?, and each individual alone contributes with for each existing
block (Figure 10.b). The expressi _!2 ! -n? corresponds to similarity contributed by the permu-
tation of all existing blocks (Figure 10.c), while n - A - B expresses the similarity contributed by
individuals alone.

Having lower and upper bounds of similarity, we can norngaliz or, what is more important

in our case, find the normalized diversity of the populatighich is given by:

, {24%A-B if A <2
b:

div — up — S1Mm
up —

Computation of diversity Lower and upper bounds are calculated once, while simjlasit
computed for each generation. The computational completiequation 1 isO(np?), wheren is
the number of variables andlis the population size. Nevertheless, this complexity aaneloluced
by creating some data structures and dividing the computatio two steps:
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Figure 10: lower bound of similarity for permutation enaugli

1. Create a matriXd = (ai;)nxn, that will store the number of appearances of variabig
position . Visit all variables of individuals to fill matrixd (orderO(np)).

2. Obtain the similarity a3~} > ai; - (a;; — 1) (orderO(n?)).

This allows us to decrease the computational complexity t(np?) to O(np + n?)™.

4.4 Learning Phase Parameters

During Learning phase, 2.000 generations were ignored at the beginniriexample gathering
and Refinemenphases. The ranges of parameter values were divided intez¥ fartitions and
subdivided withfinenessf 3. Within each cell of the training grid 5 generations wekecuted.
During Refinementdiversity descends and mounts linearly for 800 genersteath one. In order
to avoid the effects of the modeling in the strategy comparid5 preliminary runs were made for
each instance and only one cachedDiv has been chosen foinstaihce. The chosen cachedDiv
was the one that presented the smaller deviation of obselivedsity from commanded diversity
during test runs.

4.5 Diversity strategies

During control phase, six strategies (cf. Section 3.3) werapared, three dynamic (MX, CD, ZZ)
and 3 static ones (FX).

Intermediate diversity levels of MX wefe7, 0.6, 0.5, 0.4, 0.3 and0.2 (in the range of reachable
diversity, [0, 1]). Every level was maintained durirg§0 generations. Oscillation was10%, and
forgetting period was 0200 generations.

For CD,g = 100, and diversity increasing and decreasing wer@ @¥3 and0.001, respectively.

The three static strategies were fixed in value8.4f0.5 and0.6. They were named FX.4, FX.5
and FX.6, respectively.

1. The values fom of instances of QAPLIB ranges froi2 to 256 andp is 100, thus in practice time savings are
effective.
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5. Results and Discussion

Table 1 presents the mean percentual error with regard toetsieknown cost and the standard de-
viation (in parenthesis) for the different strategies argiances (i.e., a value07(0.05) means that
the mean result wak07% above the best known solution for this instance, and thelatandevi-
ation was0.05% of this value). The column on the right shows the best knowatism published

in QAPLIB (in June 2008). Average number of optimal soluidover 15 runs) are shown at the
bottom of the table. The number of problems in which each otktias outperformed the others is
also shown at the bottom of the table. Comparisons amongauetivere done using a Student T
test with a significance level of 5%.

Strategies effectiveness can be appreciated by lookirgeaaverage number of times that the
algorithm has reached the optimum. Using this criteria bt strategy is MX, followed by FX.5,
CD, FX.4,ZZ and FX.6. However, if we are interested in sgage that could be applied to different
situations, we will be more interested in the number of moid in which the strategy obtained
better results than the others. CD outperformed other dstb8 times, followed by MX, FX.4,
FX.6, FX.5and ZZ. CD and MX seems to be the most generic giiegeand could work properly
in most problems. ZZ is the only method able to always selé&9 However, it performs poorly
over the rest of the instances. This is a good example of tlieeadunch principle: a tradeoff exists
between good specialized algorithms and not-so-good amefigeones.

An obvious question is whether variation in diversity is essary. Let us consider the least
defeated fixed setting, FX.4, and compare it against CD andi4 outperforms other algorithms
in 43 instances, while CD and MX does it 69 and 64 times, rdsmdy. On the other hand, CD
and MX are outperformed in 9 and 14 occasions, while FX.4 feated in 40. Results suggest
that parameter control, when done in a careful manner, leas atlvantages against a fixed setting,
specially when the correct setting is unknown.

In order to understand how CD, MX and ZZ strategies work, wk dévelop the study of
three representative instances. Here we are interestaée ecturacy of the model, i.e., if observed
diversity follows commanded diversity, and how the modifmas in commanded diversity help to
improve fitness.

Consider CD intai64c (Figure 11). Observed diversity stays in the radge)% in relation to
commanded diversity. Diversity was well modeled, at leastlie rangg0.6, 0.9], in which it was
used. At the beginning of the execution, commanded diyevsits decreased to concentrate the di-
verse initial population. Around generation 1800, the ffisignt diversity produced the stagnation
of the population, identified by a flat line of best fithess. sT$ituation was early detected by the
controller and the diversity was raised until a somewhdtlstievel close t@).8, reaching a tradeoff
between exploration and exploitation.

Now lets consider MX solvingte36b(Figure 12). Observed diversity remains closer to com-
manded diversity than CD. This is maybe due to the oscillatibcommanded diversity: the fact
that many levels of diversity are commanded in a short tineeedeses the probability that a single
bad-modeled diversity is commanded, causing the good mmhafvobserved diversity. The multi-
ple cycles of exploration-to-exploitation of MX are usefalescape from local optima. Note that
the population started to converge around generation 4ff@@® where probably it would not be
able to escape. Raising diversity allows the populatiorfdayéet” that optimum to later find a better
one.

54



FROM PARAMETER CONTROL TO SEARCH CONTROL

Table 1: Mean percentual error and standard deviation deggato the best known results
Instance MX CD Y4 FX.4 FX.5 FX.6  Best known

bur26a  0.07(0.05) 0.04(0.05) 0.09(0.03) 0.12(0.06) @O&) 0.08(0.03) 5426670
bur26b  0.05(0.06) 0.07(0.08) 0.05(0.06) 0.21(0.11) @@ME) 0.03(0.04) 3817852

bur26g 0(0) 0(0.01) 0.01(0) 0.02(0.1) 0(0) 0.01(0) 1012717
bur26h 0(0) 0.04(0.15) 0(0) 0.17(0.28) 0(0) 0(0) 7098658
chri2a 0(0) 0(0) 0(0) 1.01(2.13) 0.27(1.03) 1.52(2.6) 9552
chr18b 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 1534
chr20c  5.92(4.78) 10.05(6.83) 2.26(2.93) 14.05(8.47)8(1.73) 11.16(5.67) 14142
chr25a  12.8(3.81) 9.58(5.08) 24.81(4.97) 9.95(6.26) A(8.29) 13.96(5.69) 3796
els19 0.24(0.37) 1.1(2.48) 0(0) 1.44(4.52) 3.22(6.31) 4@&) 17212548
esc32a  2.3(0.76) 5.38(2.3) 12.3(3.07) 1.53(1.53) 3.08[0.6.15(1.53) 130
esc32b  3.57(4.76) 8.92(4.16) 13.09(1.78) 4.76(4.76) (2.98) 4.16(4.76) 168
esc64a 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 116
had12 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 1652
had20 0(0) 0(0) 0(0) 0.27(0.26) 0.23(0.26) 0.21(0.18) 6922
kra30a  1.93(0.6) 2.01(0.75) 3.26(0.62) 1.86(0.85) 1.B@( 2.75(0.46) 88900
lipa20a  0.35(0.57) 0.19(0.32) 0.32(0.57) 0.13(0.32) @A) 0.27(0.48) 3683

lipadOb  5.79(8.47) 6.94(8.8) 17.24(3.98) 4.68(8.04) (BB/B) 7.59(8.88) 476581
lipa60a  1.12(0.05) 0.97(0.04) 1.33(0.03) 1.21(0.04) (DZR) 1.3(0.02) 107218
lipa60b  19.1(5.29) 19.25(0.24) 21.77(0.2) 20.8(0.19) 22(0.23) 21.59(0.16) 2520135

nugl5 0(0) 0(0) 0(0)  0.08(0) 0(0) 0(0) 1150
nug20  0.11(0.11) 0.03(0.07) 0.15(0.23) 0.07(0.03) 0.@HO 0.07(0.07) 2570
nug30  0.86(0.42) 0.52(0.34) 2.23(0.4) 0.52(0.29)  1.3(0.3.91(0.35) 6124

rou20  0.56(0.21) 0.45(0.24) 0.61(0.46) 0.33(0.33) O0.2HP 0.47(0.31) 725522
scr20 0.31(0.38) 0.08(0.16) 0.13(0.23) 0.18(0.31)  02RP. 0.05(0.1) 110030
skod2  1.07(0.39) 0.94(0.3) 3.34(0.38) 0.93(0.35)  1.@)(02.44(0.27) 15812
sko64  1.43(0.24) 1.14(0.36) 5.02(0.43) 2.46(0.34) 3.4880 4.22(0.3) 48498
ste36a  2.28(1.07) 1.86(1.02) 7.78(1.55) 2.33(1.17) D.82] 3.94(0.85) 9526
ste36b  2.25(1.84) 3.08(3.31) 7.07(1.6) 3.57(3.47) 3.T7al2 3.05(1.77) 15852
ste36c  1.97(0.92) 1.47(1.02) 3.47(0.84) 2.19(1.24) 181 2.8(1.09) 8239110
tai20a 1.01(0.4) 0.89(0.22) 1.32(0.34) 0.84(0.25) O.8HD 0.8(0.49) 703482
tai20b  0.08(0.18) 0.3(0.22) 0.17(0.21) 0.21(0.23)  0ZZP. 0.17(0.21) 122455319
tai40a  3.52(0.38) 2.91(0.41) 5.26(0.35) 4.08(0.36) Q@) 5.14(0.36) 3139370
tai40b 1.6(1.26) 2.11(1.93) 2.7(1.28) 2.04(1.81) 2.08YL.1.83(1.24) 637250948
tai60a  5.68(0.46) 3.64(0.26) 7.17(0.31) 6.3(0.34) 6.1KD 7.13(0.24) 7205962
taiOb  1.54(0.82) 1.35(0.74) 3.58(0.77) 5.7(3.4) 1.6¥)L.1.91(0.83) 608215054
tai4c 0.1(0.11) 0.03(0.03) 0.1(0.11) 0.3(0.2) 0.28(N.1916(0.14) 1855928
tho40  1.55(0.56) 1.45(0.58) 4.75(0.66) 1.39(0.33) 2.@H(D 3.71(0.44) 240516
wil50  0.43(0.11) 0.36(0.18) 1.86(0.16) 0.86(0.21)  0.68(01.22(0.11) 48816

avg.opt 4.82 4.6 4.29 4.5 4.61 3.87
outp MX - 8 2 2 1 1
outp. CD 3 - 1 2 2 1
outp. ZZ 21 21 - 18 21 16
outp. FX.4 12 11 6 - 6 5
outp. FX.5 12 12 4 9 - 14
outp. FX.6 16 17 4 12 1 -
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Figure 11: Plot of commanded diversitP{,,.), running mean (100) of observed diversi®y )
and best cost (below) faai64c using CD
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Figure 12: Plot of commanded diversitP{,,.), running mean (100) of observed diversiiy )
and best cost (below) fate36bh using MX

Figure 13 shows ZZ solvingls19 In this case the model tends to produce lower diversities
than commanded, but this seems not to be important, sinceaZadived this instance in every run.
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Best improvements were produced in generations 650, 198@267 (where the oscillation was
reset). In all cases improvements are found when diversigjose t0).7, thus it seems to simply
be matter of keeping the right diversity. Actually, exeons with fixed diversity ird.7 (not shown
here) produced almost the same results.
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Figure 13: Plot of commanded diversitP{,,.), running mean (100) of observed diversi®y )
and best cost (below) fais19 using ZZ

Perhaps the most intriguing question is why neither CD norditXreach this value. Figure 14
shows plots okls19being solved by CD and MX.
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Figure 14: Plot of commanded diversitP{,,.), running mean (100) of observed diversi®y )
and best cost (below) fais19 using CD (left) and MX (right)
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CD systematically decreases diversity belo®, causing stagnation in a local optima. This is
probably due to the selection scheme usald19has big values of cost{ 107), so roulette wheel
is not always able to keep the best value from one generatitimetnext, since a small difference
in fitness values produces virtually no difference in thebpiwlity of being chosen. This produces
the illusion that the population is spread, reason why CDabses its diversity value. On the other
hand, the problem with MX is that most of the time diversityeigher above or below.7, and the
population does not have the time to find the global optimunoteNhat when diversity remains
longer at this value, lower cost are produced (generati@d9 2nd 8400 in the figure, when using
MX).

5.1 Learning time

The main drawback of this approach is the time consecratdtethearning phase, which is victim

of the “curse of dimensionality”, given the exponentialatednship of the number of parameters
controlled and the number of examples to be collected. Thabeu of generations required by the
Learning phase is given by the following expression.

d
Gi—l-e'H(pj'f)—i-Gr (2)
j=1

whereG; andG,. are the number of generations during the Ignoring and Renésubphases,
p; is the number of fuzzy partitions of the parameferf is the fineness, anelis the number of
examples taken in each cell of the training grid. The tabla@s the number and percentage of
generations dedicated to each phase, using the settingtadesabove.

Table 2: Distribution of generations by phase and subphase

Phase Subphase Generations Percentage
Ignore 2.000 9%

Learning Example gathering 8.640 39%
Refinement 1.600 7%

Control 10.000 45%

Following subsections discuss some extensions and mdtifisan order to improve the method-
ology, specially trying to reduce Learning time.

5.2 Learning tree

The main idea here is to quickly identify useless settingsruter to prune the search space of
parameters. Figure 15 presents a 2-parameter search spaeestrong line represents the ideal
CachedDiv that we are trying to find. The idea is to divide tloendin of each parameter in a
number of intervals (2 in the example), and take a sample tif biversity and quality in each
area (dots in the figure). The average values give a roughoagprto compare areas and decide
which one should be further explored. The comparison isasethese two criteria, and only
the areas that are Pareto-dominant are “opened” (B and @Geifigure). The process is repeated
several times, opening sub-areas with different compresra$ EEB. At the end, only the gray zones
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should be strongly explored. To test this approach we havelgged a method able to explore a
n-dimensional search space, dividing each dimensionsimtervals every time.

AR

diversity

D

Figure 15: Expected operation of learning tree. Searchesphparameters is explored according
to its Pareto-dominance. In the first level zones B and C aemeqh because they are
Pareto-dominant over A and D

The problem with this approach is the speed of he EA to find atisol: regardless of the
parameter settings, diversity and quality increase quicki examples in a small area dominate the
rest of the points, avoiding the exploration of other segimehCachedDiv. In practice, this method
could be useful for exploring spaces that do not evolve (oit dowly). This problem could be
overcame by comparing several parallel executions of theri#thms, one in each opened zone,
using a method like the one proposed by Yuan and Gallaghéi7§20

5.3 Automatic fuzzy partition

The placement of fuzzy partitions plays a crucial role in thulity of the model. Consider the
function being modeled in Figure 16 with two different péwotis. The strong line in Figure 16.a
is the function to be modeled, and the dashed one is the mobiglined by linear regression in
each Fuzzy partition, regularly placed (shown below). Fégl6.b shows the modeling of the same
function, this time with Fuzzy partitions placed in a smavtay. Note that important improvements
of the model can be obtained by slightly moving partitionsiplementing a self-organizing con-
troller has two advantages: (1) improve the accuracy of nsp@ad (2) eliminate the parameters
associated to the number of partitions to apply to each peateam

Several constructive self-organizing methods have beeposed to define fuzzy partitions in
Mamdani-type controllers (Riid and Ristern, 2004; Piegad1). We have experimented a method
inspired by these previous works, making the necessarygelsaio use it with Takagi-Sugeno Con-
trollers. The motivation is twofold: on one hand, an autamsetting of fuzzy partitions eliminates
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Figure 16: Effect of fuzzy partitions placement when maugk function

the need of setting the parameter corresponding to the muwhhezzy partitions f; in equation 2);
on the other hand, a better partitioning could reduce thebeurof fuzzy partitions, thus decreasing
the number of generations during example gathering subphas

The process is shown in Figure 17. Strong lines represerfuttation to model, dashed lines
represent the model and thin lines represent the lineapajppation of each fuzzy partition. At the
bottom of each plot, the error of the model and the partiticimesne is shown.
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Figure 17: Self organizing fuzzy model. Example of Fuzzytipans placement, guided by error

At the beginning (a), a single partition, that covers all tienain of parameters, models the
function as a linear function. The first cut point is definedltyking at the error function: the
peak point on the bhiggest error area is selected to be cukéuavith an asterisk). The function is
modeled again (b), this time by considering the cut. A newirgipoint is defined and the model is
built again (c).

In order to prevent over-training of the model, the gathel&id is divided into two sets, the first
one, of size% of the examples, is used for training, and the remainingltho control generality.
Cuts are placed in the higher error zone, considering adlrpaters. If a new model is less accurate
than the previous one, the last cut is removed from the mauklpat in a tabu list, until another
successful cut is found. The process goes on until the maaekdached a fraction of the first
model, or until there are not points left for placing new cuts
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Compared to previous existing methods, we have modified & uacrucial detail. Given
that the consequents of rules (outputs) in Mamdani-typdrolbers represent fixed levels of the
output variable, maximum error points correspond typjctdl the center of a fuzzy rule. On the
contrary, when using Takagi-Sugeno FLCs, maximum errantpaiorrespond to thedgesof fuzzy
partitions, and no to their centers.

This method eliminates the need to define a number of fuzitipas and the manual bounding
of the domain of parameters (note that in Figure 8 the domfdimeomutation exch-mut operator is
restricted tdo, 0.6]).

In our problem, the effect of parameters over both diveraitg fithess present often a simple
shape, so the accuracy has not been improved very much. ldgwhis approach represents an
interesting advance for our controller, since it allowsagét rid of some parameters, providing a
more autonomous algorithm.

5.4 Confidence interval for CachedDiv

As the search goes on, individuals in the EA cover differeaas of the search space of the problem.
The fitness landscape may vary in different zones of the Besgrace, thus the effect of parameters
can change in different stages of the search. In order totepda model, we have tried to blend
refinement subphase of learning and control phase. The $dwaconstantly refine the model, in
particular the values of parameters that produce the masadeed diversity levels. This could have
the additional benefit of reducing the number of generatiegsired for the initial (pure) learning
phase, because a strong learning would be not needed anyanaregh outline would be enough
to start, and the real CachedDiv would be discovered orilyhe-
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Figure 18: Confidence interval shown in cachedDiv table Tajpngular distribution of parameter
setting, based on length of confidence intervals (b)

A confidence interval is defined for each parameter and fdewadlls of diversity. The thickness
of the interval depends on the accuracy of observed diyassih respect to commanded diversity.
It is thiner when the values of parameters that producesemgliversity is well identified and wider
when several values can produce this diversity. Figure 4i8osvs cachedDiv with the confidence
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interval. The thickness of each diversity level is obtaibgdooking at Diversity FLC. A threshold
around a given diversity is set, for instance 48%, and assigned as lower and upper bounds of
cachedDiv.

In order to explore the search space of parameters duringuthygparameters instantiation is
done using a triangular distribution, using the value inheaDiv as the mode, and those corre-
sponding to lower and upper bounds as limits. Figure 18.lwslibe probability density function
for two parameters, using the intervals corresponding tavangdiversity (small triangle at the
bottom of Figure 18.a).

This approach provides a better model of the parametertsspece. However, the cost of this
information was too high: the fact that parameter valuesviestantiated in a range makes even
harder to obtain the diversity requested by the controllis alternative could be used if the goal
is to understand the effect of parameters over the EA.

6. Conclusions

Excluding evolutionary strategies, parameter controhMol@ionary algorithms is restricted to ex-
perts. Actually, a general user of EA fixes the parametetseelty hand or by a long series of
experiments, that are often incomplete and lead to a subapgiarameterization.

In this paper we propose a method that automatically createsbstraction of the parameters
of the EA. All parameters are handled in the same way, and togitrol is wrapped by a single
parameter, that adjusts the balance between exploratid®asioitation. The importance of this
abstraction relies on a human factor: it is indeed much e&sideal with a single and intuitive
parameter than with many ill-known ones. Our goal was toteraamethod that would work with
any parameter in an abstract way, easy to implement, anchéag the user to save time in the
process of becoming familiar with the parameters of theralyn. As far as we know, no prior
effort was made to create such general abstraction of pasasria EAS.

We distinguish here two ways for achieving parameter cantitne most used one consists
in setting up a function that computes the parameter vakmsrding to some measures of per-
formance. A different approach, used in this work, reliestmidea of discovering the effect of
parameters over performances by building a model based eha examples obtained from the
same algorithm.

Our method is divided in two main phases. The first one is @bedtto the understanding
of how the algorithm works, and corresponds to the automatiothe user's work when he tries
to establish the values of parameters. The second phasesgonds to the real execution of the
algorithm, based on the knowledge obtained before.

Two criteria are considered for each parameter, that aremmomto any EA. The first one is the
quality of the solutions, which is measured as the mean &taethe individuals. The second one is
population diversity. We aimed at maximizing both critariaorder to keep a compromise between
these two goals and identify the parameter values correlpgto the Pareto front. Since the shape
of the functions that relate parameter values with bothrditeeand quality are unknown, we used
fuzzy logic controllers to model these functions.

The resulting Pareto front corresponds to a set of pointsrépesent different compromises
between exploration and exploitation (EEB).

During the first phase, we analyze the main problems that wedevhen gathering the exam-
ples, namely dimensionality, inertia and noise. Some ntashes were proposed to mitigate them.
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The learning process is presented as a black box to the useomly needs to implement two sim-
ple methods to integrate the controller into his algoritivevertheless, a more inquiring user may
benefit from the acquired knowledge in order to understaadnternal behavior of the algorithm.

During the second phase, several strategies for diveraitiation were compared. We may
distinguish between two extreme behaviors, from strasetiiat look for an ideal level of EEB, to
those which promote a continuous oscillation between eaptm and exploitation. An experimen-
tal comparison of these strategies has been presented.tfbtegses MX and CD, stood out in the
comparison. MX is based on oscillation, and CD on maintgrarstable level of EEB. Although
both obtained similar results, CD a appeared more integestile to its simplicity.

Our approach has been tested over 38 different instance®\Bf @sing an EA with 3 opera-
tors, whose application rates were controlled. We also pavposed a new diversity measure for
permutation encodings, used in QAP.

The main drawback of our method is the amount of time requoether the examples to build
the model. In our experiments;% of the generations were dedicated to this task. Howeverstm
be noted that this method replaces the work of the user wheésthgng to obtain an appropriate
parameter setting. Anyway, several extensions of the rdethioned at reducing this time, were
outlined and could guide future work on this subject.

Other future directions may include a method to identifyapaeters that does not have a pre-
ponderant effect over the EA performance, in order to ela@rthem from the controlling scheme
and lighten the learning phase. Parallelization of the adatjon, or store results from one run to
the next could be also considered to decrease the learmieyg ti

Future work could also include an investigation of moretsgies, trying to identify the simpler
and most effective ones. We also want to search for othedgmabusing different operators and
parameters in order to validate the generality of our metltdde may explore other s parameters
such as local search operators, discrete ones, selecéssype, or population size. Of course, since
our approach is based on the measurement of diversity andygparameters that affect fitness
function could not be controlled by our method.
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